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Abstract 

The partially resolved transition array model for radiative transitions between ordinary 

electronic configurations is extended to the super configuration approach. The specific 

application incorporates intermediate coupling effects into transition arrays to describe the 

transition from LS to JJ coupling without the ad hoc approximations introduced in past 

formulations. More generally, the extended concept permits stepwise refinement of the super 

transition array method towards the line-by-line limit in ordinary configurations. Thus, the 

formalism forms a framework for a hybrid scheme to combine detailed line accounting and 

statistical methods. 
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1. Introduction 

For plasmas containing partially ionized atoms the detailed line accounting (DLA) method is, 

in principle, the ideal for calculating bound-bound spectra. For complex ions, however, the 

myriad spectral lines make DLA calculations impractical [1], even under the common 

approximation of neglecting configuration interactions (CI). To circumvent this impasse, 

calculations resort to statistical treatments, namely the unresolved transition array (UTA) 

approximation, where all spectral lines from a configuration-to-configuration transition array are 

treated as a single spectral feature [2,3]. The UTA model gives compact formulas for the 

strength-weighted energy mean and variance of the array, which together with a Gaussian 

approximation affords a fast spectrum calculation. 

For very large numbers of configurations even the UTA approximations become unfeasible. 

In this case the super transition array (STA) method [4,5] has proven a powerful technique to 

model plasmas. The STA method can account for all possible bound-bound radiative transitions 

in the plasma by collecting ordinary configurations into a single entity, the super configuration, 

significantly reducing the computational effort. The STA method replaces many UTA’s by a 

single Gaussian profile with strength-weighted moments obtained from compact formulas; thus, 

avoiding the explicit summation over the individual UTA’s. 

Along with its computational advantages the STA approach, however, carries certain defects 

such as inaccurate higher moments or excessive merging of spectral features. Furthermore, no 

exact statistical formalism exists to describe the evolution from LS to JJ coupling. That is, 

statistical descriptions of transition arrays with the UTA or STA approximations rely on pure LS 

or JJ angular momentum coupling. The LS coupling is valid when spin-orbit terms are weak 

compared to the electrostatic interactions. The transition array is then described by a single 

Gaussian characterized by the line strength, energy centroid, and variance obtained form the LS-

UTA formulas [2]. These moments can be made near exact if the spin-orbit parameter is 

computed non-perturbatively. For cases with significant spin-orbit interaction, however, the 

single Gaussian feature is too crude. 

In the opposite limit when spin-orbit interactions are much stronger than the Coulomb terms, 

JJ coupling is appropriate. The spectrum is now split into 2 or 3 distinct spin-orbit split arrays 

(SOSA) each with its own strength, centroid, and variance [3]. In practice, however, transition 

arrays often required intermediate coupling where the eigenstates are a mixture of the pure 
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representation. This effect has been termed limited CI since it may be computed by including 

interactions between all relativistic configurations belonging to the same non-relativistic 

configuration [6]. A successful description of this effect should describe the progression from a 

single LS-UTA to a more complicated transition spectrum and finally the pure SOSA results. 

Models have been developed to account for this phenomenon, however, they rely on ad hoc 

approximations and are difficult to improve systematically [6, 7,8]. 

Recently an extension of the UTA approach was developed to resolve partially the single LS-

UTA feature with a number of Gaussians by exploiting properties of the moments [9,10,11]. 

First, the energy shift from the configuration average energy difference depends only on the 

optically active shells and is independent of the spin-orbit interaction. Secondly, the 

contributions to the variance form spectator subshells are independent. Finally, the limited CI 

effects are completely described by computing a DLA transition array including only the two 

optically active subshells in intermediate coupling and dressing each line with a variance 

provided by the spectator subshells. The partially resolved transition array (PRTA) concept 

conserves the known arrays properties, provides improved higher moments, and accounts for 

initial level populations while remaining computationally efficient. Systematic refinement of the 

spectrum is accomplished by including more subshells in the DLA calculation (albeit at greater 

computational cost). 

The example in Fig. 1 illustrates the limited CI effects as well as the PRTA method. The full 

DLA calculation with intermediate coupling using a Voigt profile with Doppler broadening plus 

an artificial Lorentz width of 0.01 eV. The plot includes the LS-UTA single Gaussian [2] and the 

sub-arrays from the SOSA approach [3]. Clearly, both statistical methods fail to describe the full 

DLA calculation. For comparison the PRTA with only the two active subshells included in the 

small DLA calculation captures the location and relative strength of the sub-arrays [10]. 

The purpose here is to extend the PRTA ideas to the STA method and correct inadequacies of 

the STA description. It has the advantages of being conceptually simple, completely describes 

limited CI effects, and furthermore can be systematically refined to the full detailed 

configuration accounting (DCA) or detailed line accounting limit. Thus, the formalism forms a 

framework for a hybrid scheme to combine detailed line accounting and statistical methods. 

The work briefly reviews the STA method in Section 2, which also serves to introduce the 

notation. Section 3 describes the basic steps involved in applying PRTA approaches to 
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relativistic Super Transition Arrays. Numerical examples are provided in Section 4 with 

conclusions offered in the final Section 5. 

3. STA method 

A super configuration 

€ 

Ξ is designated as a set of super shells 

€ 

σ  with electron occupation 

€ 

Qσ  

[4,5], 

 
!
Ξ= σ Qσ

σ∈Ξ
∏  (2.1) 

where a super shell consists of a group of ordinary atomic subshells   

€ 

nℓj . The set of relativistic 

configurations comprising the super configuration is constructed by distributing 

€ 

Qσ  electrons in 

all possible ways among the ordinary subshells subject to particle conservation, 

 

! 

σ Qσ = nαℓα j( )qα
α∈σ
∏

qα =Qσ
α∈σ
∑

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

∑  (2.2) 

with !qα  the occupation of the α  subshell. A one-electron radiative transition from a subshell α 

in an ordinary configuration to a subshell β results in a second ordinary configuration and 

defines a transition array. The collection of such arrays defines the super transition array (STA). 

The STA method makes several essential approximations [4,5]; the most relevant to the 

present discussion are recalled. Following the UTA description it assumes that the Boltzmann 

factor for the level populations does not vary significantly within an ordinary configuration. On 

the other hand, Boltzmann factors are included from one ordinary configuration to another 

within a super configuration, but using a non-interacting approximation where the ordinary 

configuration energies are given by the sum of independent particle energies.  It is also important 

to note that each ordinary configuration within the super configuration has a common correction 

to the Boltzmann factor beyond the independent electron approximation to the energy. This 

correction is based on Jensen’s inequality for partition functions and is essential for obtaining 

realistic ion stage distributions [12]. Another approximation assumes the radial integrals for all 

ordinary configurations in the STA are obtained from the same self-consistent solution of the 

central potential. Finally, although the oscillator strengths depend on the transition energy, the 

STA method computes all with the same energy given by the STA average energy. 

The average energy of a dipole transition connecting ordinary subshells α and β for the initial 

ordinary configuration !C  can be written in the form [2,3] 
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! 
EC

αβ = !DC
αβ + qγ −δαγ( ) !Dγ

αβ

γ ∈C
∑  (2.1) 

where !
qγ  is the occupation of spin-orbital γ  in configuration !C  (adopted Greek indices and 

tilde for the relativistic subshells and configurations respectively),  δαγ is the Kronecker delta, 

and the ! 
!Dγ
αβ  are independent of the occupation numbers and include the shift of the UTA 

centroid from the configuration average transition energy. The centroid of the STA is the average 

over all ordinary configurations within a super configuration 

€ 

Ξ [4,5], 

 EΞ
αβ = EC

αβ

Ξ
=

WC
αβEC

αβ

C ∈Ξ

∑

WC
αβ

C ∈Ξ

∑
 (2.2) 

Note that the configuration weighting accounts for the dipole transition strength, 

 WC
αβ =ωΞ

αβqα gβ − qβ( )PC  (2.3) 

as well as the Boltzmann configuration probability 

!!
PC =

1
Γ
GC e

− EC−µNC( ) T = 1
Γ
e−ΔEΞ T⎧

⎨
⎩

⎫
⎬
⎭

gγ !
qγ ! gγ −qγ( )!γ ∈C

∏ Xγ

qγ  (2.4) 

where T is the plasma temperature in energy units, µ is the chemical potential, and ΔEΞ  is a 

correction to the Boltzmann factor beyond the independent electron approximation [12]. The 

independent subshell Boltzmann factor is 

 !
Xγ = e

− εγ −µ( ) T  (2.5) 

with εγ   and !
gγ   the removal energy and the degeneracy for subshell γ , respectively, and the 

grand partition function 

 
Γ = PΞ

Ξ

∑ = PC
C∈Ξ
∑
%
&
'

(
)
*Ξ

∑  (2.6)  

Note well that the absorption transition probability from subshell α to subshell β is approximated 

using the super configuration average energy making it independent of the ordinary 

configurations, 
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 !!
ωΞ

αβ = πe2h
mc

EΞ
αβSαβ

3  (2.7)  

with 

 
!! 
Sαβ ∝

jα 1 jβ
1 2 0 −1 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

= 14
ℓα 1 ℓβ
0 0 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

gα gβ
jα 1 jβ
ℓβ 1 2 ℓα

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

2

 (2.8)  

the dipole line strength connecting subshells α and β for a hypothetical one-electron atom 

[13,14]. 

The expression for the STA centroid simplifies to a form  

!! 
EΞ

αβ = !D0
αβ + εσ

αβ Qσ −δσ ,σα
( )

σ∈Ξ
∑

   (2.9) 

which is linearly additive in the independent super shell quantities  

!! 
εσ
αβ Q( ) = gγ

αβXγ
!Dγ
αβ
Uσ Q−δσ ,σγ

"gαβγ( )
Uσ Q "gαβ( )γ ∈σ

∑
 (2.10) 

where 

€ 

σα  identifies the super shell containing the subshell α and super shell partition functions 

are explicitly defined as 

 

!! 

Uσ Q !g( ) = gγ !
qγ ! gγ −qγ( )!γ ∈σ

∏
qγ

γ ∈σ
∑ =Q

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

∑ Xγ

qγ  (2.11) 

with 

 
! 
!gαβγ" = gν

αβγ"{ }≡ gν −δαν −δβν −δγν"{ }  (2.12) 

a modified vector of orbital degeneracies. Careful inspection reveals that the centroid depends 

only on the two subshells of the optically active electrons. 

Under the same assumptions and after lengthy manipulations, the variance of the STA can be 

written in the form [4,5] 

ΔΞ
αβ = Δσ

αβ

σ∈Ξ
∑

  (2.13) 

where Δσ
αβ  contains the variance contribution from the individual configuration average energies 

including energy shifts due to the selection rules (the UTA shifts) and the energy level splitting 
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within the ordinary configurations (the UTA widths). An important feature of ΔΞ
αβ  is that the 

contributions from the super shells add independently. 

The STA strength for photon absorption by a dipole transition from subshell α to subshell β 

is given by [4,5] 

 

!! 

IΞ
αβ = WC

αβ

C∈Ξ
∑ = 1

Γ
e−ΔEΞ T⎧

⎨
⎩

⎫
⎬
⎭
ωΞ

αβXα gα gβ Uσ Qσ −δσ ,σα

!gαβ( )
σ ∈Ξ
∏

= PΞ ωΞ
αβXα gα gβ

Uσ Qσ −δσ ,σα

!gαβ( )
Uσ Qσ

!g( )σ ∈Ξ
∏

  (2.14) 

where 

€ 

PΞ  is the occupation probability of the super configuration 

€ 

Ξ. 

Finally, the transition array is approximated by a Gaussian and the STA spectrum is given by 

 !!LΞ
αβ ν( ) = IΞαβ G hν ;EΞ

αβ ,ΔΞ
αβ( )  (2.15) 

with 

 

!!
G hν ;E ,Δ( ) = 1

2πΔ
exp −

hν −E( )2
2Δ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (2.16) 

For clarity the intrinsic line profile was neglected, but can be included by convolving it with the 

normalized Gaussian in Eq. (2.15). 

3. Super-PRTA 

As mentioned above, the PRTA ideas are extended to the STA method. The specific 

application describes the limited CI effects with a DLA in intermediate coupling. More 

generally, the extended concept permits stepwise refinement of the super transition array method 

towards the line-by-line limit in ordinary configurations. Thus, the formalism forms a framework 

for a hybrid scheme to combine detailed line accounting and statistical methods. 

3.1 Reduction from relativistic to non-relativistic STA 

Analogous to the PRTA development of ordinary configurations, the generalization to super 

configurations proceeds not from moment formula generated in a JJ basis with relativistic spin-

orbitals as described in Section 2, but from intermediate coupling calculations utilizing a non-

relativistic LS basis. A non-relativistic super configuration Ω  is a set of super shells !s , which 
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now consists of a group of ordinary non-relativistic orbitals ! nℓ  with electron occupation !Qs . A 

non-relativistic orbital label b (Latin alphabet for non-relativistic orbitals nℓ ) can be associated 

with up to two relativistic spin orbitalsβ . Henceforth relativistic configurations, ! !C , are denoted 

with the tilde to distinguish them from non-relativistic configurations, !C . 

By convention relativistic super shell structure assigns the spin up and spin down orbitals to 

the same super shell so that each relativistic super configuration 

 !!

Ξ≡ 1s1/22s1/22p1/22p3/2⎡⎣ ⎤⎦
10 3s1/23p1/23p3/23d3/23d5/2( )17

4s1/24p1/24p3/24d3/24d5/24 f5/24 f7/2( )2 5s1/2...( )1
 (3.1.1) 

is associated with the non-relativistic super configuration 

 !!Ω≡ 1s2s2p⎡⎣ ⎤⎦
10 3s3p3d( )17 4s4p4d4 f( )2 5s5p...( )1  (3.1.2) 

with the same probability. The three possible relativistic super transition arrays are subsumed by 

a single non-relativistic transition array. As an example, consider 

 

3d3/2 → 4 f5/2
3d5/2 → 4 f5/2
3d5/2 → 4 f7/2

"

#
$$

%
$
$

⇒ 3d→ 4 f  (3.1.3) 

whose energy centroid is given by  

 !

EΩ
ab =

WC
abEC

ab

C∈Ω
∑

WC
ab

C∈Ω
∑

 (3.1.4) 

with the average energy of a non-relativistic configuration (including LS-UTA shifts) 

 !!
EC
ab ≡ D0

ab + qi −δ ia( )
i∈C
∑ Di

ab  (3.1.5) 

Note that the non-relativistic orbital parameters !Di
ab  can be written as spin averages over 

relativistic orbital parameters ! 
!Dγ
αβ . 

The configuration weighting, defined exactly as 

 ! 
WC

ab ≡ W !C
αβ

!C∈C
∑⎧⎨

⎩

⎫
⎬
⎭β∈b

∑
α∈a
∑  (3.1.6) 
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can be written in a form analogous to the relativistic case by making two weak approximations 

within the relativistic configuration Boltzmann factor. Specifically, 

 ! E !C ≅ EC for all !C ∈C  (3.1.7) 

and that the already approximate average energy in the transition probability be replaced by  

 !EΞ
αβ ≅ EΩ

ab  (3.1.8) 

Then 

 !
WC

ab =ωΩ
abqa gb −qb( )PC  (3.1.9a) 

 !!
PC ≡

1
Γ
GCe

−β EC−µNC( )  (3.1.9b) 

 !!
ωΩ

ab = πe2h
mc

EΩ
abSab

3  (3.1.9c) 

where (see Appendix B of [6]) 

 !!
Sab ≡ 1

gagb

⎛

⎝⎜
⎞

⎠⎟
gα gβS

αβ{ }
β∈b
∑

α∈a
∑ ≈ 12

la 1 lb
0 0 0

⎛

⎝
⎜

⎞

⎠
⎟

2

 (3.1.9d) 

With the judicious choice in Eq. (3.1.8), the strength of the transition array 

 !
IΩ
ab = WC

ab

C∈Ω
∑  (3.1.10) 

conserves the sum of JTA’s (details are relegated to Appendix A). It is emphasized that both the 

centroid and variance are independent of the choice of this parameter (it cancels in the defining 

numerator and normalizing denominator) and its value is constrained only in the asymptotic 

DCA limit of super shell refinement. Note also that the normalizing factor of the grand partition 

function remains that of the relativistic accounting. 

The variance can be written in the form  

 
!
ΔΩ
ab = Δ spin−orb

ab + Δ s
ab

s∈Ω
∑  (3.1.11) 

The electrostatic contribution to the variance add linearly as independent super shell quantities 

and depends on non-relativistic Slater integral parameters that are evaluated as spin averages 

over their relativistic counterparts [15]. The effects of intermediate coupling depends only on the 

two active subshells independent of their occupations and contributes only to the variance as 
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!!
Δ spin−orb
ab ≡ 1

4 ξb −ξa( ) ξblb lb +1( )−ξala la +1( )⎡⎣ ⎤⎦+
1
2ξbξa

⎧
⎨
⎩

⎫
⎬
⎭

 (3.1.12) 

where ξa  stands for the spin-orbit radial integral of the a  orbital [16]. The shift from 

configuration average energy depends only on the two active shells. 

3.2 DLA calculations for active subshells 

The present formulation now follows closely those developed in the PRTA method for 

ordinary configurations in intermediate coupling [10]. The plan is first to resolve a given a super 

configuration Ω  into a set of daughter super configurations Φ{ }  such that each daughter has 

each active subshell isolated in its own super shell. This results in a modest multiplicity in the 

number of daughter super configurations that is processed to produce a spectrum. It is 

emphasized that the present description must use the LS representation together with spin-orbit 

parameters to perform the necessary intermediate angular momentum coupling. 

To proceed, consider the STA for the !!a=3d  to !!b= 4 f  transitions with initial super 

configuration, 

 !!Ω = 1s2s2p( )10 3s3p3d( )17 4s4p4d4 f( )2  (3.2.1) 

The set of daughter super configurations is then given by 

 

1s2s2p( )10 3s3p( )8 3d 9 4s4p4d( )2

1s2s2p( )10 3s3p( )8 3d 9 4s4p4d( )1 4 f

1s2s2p( )10 3s3p( )8 3d 9 4 f 2

1s2s2p( )10 3s3p( )7 3d10 4s4p4d( )2

1s2s2p( )10 3s3p( )7 3d10 4s4p4d( )1 4 f

1s2s2p( )10 3s3p( )7 3d10 4 f 2
 (3.2.2) 

where each daughter super configuration has explicitly isolated the optically active subshells. 

At this juncture the Super-PRTA algorithm admits some ambiguities. The STA model 

assumes that all the UTA oscillator strengths within the STA are computed with identical 

energies typically taken as the centroid of the array. Thus 

 !

IΩ
ab ≈ EΩ

ab qa gb −qb( )PCΩ
C∈Ω
∑

IΦ
ab ≈ EΦ

ab qa gb −qb( )PCΦ
C∈Φ
∑

 (3.2.3) 
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and while the specialization of !EΦ
ab  (as well as a specialization of the correction !ΔEΦ  to the 

probability distribution) is in principle more accurate for !IΦ
ab , as a consequence strength is not 

strictly conserved: 

 
!

IΦ
ab

Φ∈Ω
∑ ≠ IΩ

ab  (3.2.4) 

In the present calculations the cruder approximation was used whereas the configuration 

weighting for all daughter super configurations is inherited from the parent super configuration 

(i.e., calculated using the formula for the parent); thus, conserving strength. 

The method next performs a DLA calculation including only the two active subshells. For the 

aforementioned example the 6 transition arrays 

 

3d 9 → 3d84 f 3d10 → 3d 9 4 f

3d 9 4 f → 3d84 f 2 3d10 4 f → 3d 9 4 f 2

3d 9 4 f 2 → 3d84 f 3 3d10 4 f 2 → 3d 9 4 f 3
 (3.2.5) 

are required. It should be mentioned that DLA calculations with open shells of equivalent f and g 

shell electrons of non-trivial occupancy are accessed with surprisingly frequency, so Racah 

based DLA atomic structure packages [16] may require extended tables of coefficients of 

fractional parentage [17,18,19]. For such DLA transitions, alternative atomic structure packages, 

such as those employing determinant bases, may trade speed for simplicity and reduced memory 

requirements [20,21]. 

Similar to the PRTA approach [10], each line from the DLA calculations is dressed by the 

contribution from the spectator super shells. Thus, the daughter STA spectrum is given by 

 
!!
LΦ
ab hν( ) = JΦab gje

−uj kT s j G hν ;hν j ,Δ̂Φ
ab( )

j=1

NΦ
ab

∑  (3.2.6) 

where the DLA calculation yields !NΦ
ab  lines with 

€ 

hν j , sj , gj , and 

€ 

u j  the line energy, line 

strength, initial level degeneracy, and initial level energy for the jth DLA transition, respectively. 

The probabilities and line strengths from the DLA calculation are normalized so that 

 
!!
IΦ
ab = JΦ

ab gje
−uj T

j=1

NΦ
ab

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
s j

j=1

NΦ
ab

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (3.2.7) 
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defines !JΦ
ab   with !IΦ

ab   given in Eq. (3.2.3). The variance accounts for the contribution of the 

spectator electrons to the width of the feature 

 !!
Δ̂Φ
ab = Δ s

ab

s∈Φ
s≠sa ,sb

∑
 (3.2.8) 

and excludes the contribution from the optically active super shells. The expression in Eq. (3.2.6) 

accounts for the Boltzmann distribution of the initial levels in the DLA calculation. This can 

impact the spectrum if the configuration term structure (including the spin-orbit splitting) in the 

initial optically active subshell is comparable to the plasma temperature. In the sample 

calculations provided here this effect has been omitted. 

The spectrum replacing the parent STA results, !
LΩ
ab ν( ) , is the weighted sum of all the STA 

daughters, 

 !
LΩ
ab ν( )→ LΦ

ab ν( )
Φ∈Ω
∑

  (3.2.9) 

Note that the weighted strength !IΦ
ab  appears in the expression for !LΦ

ab  and already includes the 

relative probability of the daughter STA. 

4. Numerical examples 

The method described in Section 3 is illustrated with two examples. The first focuses on a 

single super transition array. Since the line spectrum has temperature dependence not only from 

Doppler broadening but also from the Boltzmann weighting of the initial levels and the spectator 

electron variance, the temperature in the first example is chosen so that the featured ion charge 

state agrees with the ionization average from a Thomas-Fermi [22] calculation at one-hundredth 

normal density of the material. Thus, the example is representative of conditions relevant to 

experiments and laboratory applications. It involves the 3d to 4f transitions in Section 3.2 for 

Er39+ at 

€ 

ρ = 0.09 g /cm3  and 

€ 

T = 295eV . The line spectrum for the Super PRTA approximation 

is displayed in Fig. 2. Also in the figure is the total PRTA line spectrum including only active 

subshells in the small DLA for all 30 ordinary configurations subsumed in the super 

configuration. These are contrasted with the spectra from the SOSA approach generated with 

DCA or STA treatments. A Voigt profile describes the intrinsic line shape where the Gaussian 

contribution is due to Doppler broadening and a Lorentz component due to electron impact [23] 
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plus natural width. For the parent STA the Gaussian width includes the total STA variance where 

the daughters only include the variance from the spectator super shells. Since even two open 

shell configurations can generate myriad lines in intermediate coupling [24] and a common line 

profile is assumed for each member of the transition array, an efficient method for placing line 

profiles on an energy mesh can be used to advantage [25]. 

A second example is a complete opacity calculation for Fe at T=20 eV and ρ=10-4g/cm3 

relevant to astrophysical applications [26]. These conditions, besides highlighting the sensitivity 

of the Rosseland mean to array porosity exhibited by DLA, also served as a motivation to 

include intermediate coupling effects [6,7]. As seen in Fig.3 the limited CI effect is manifested 

by shifting the strengths of the n=3 to 3 transition arrays in the 80-100 eV range, as evidenced by 

the TOPAZ intermediate coupling DLA calculations [27] absent in SOSA treatments either with 

TOPAZ DCA or VISTA [28] super configuration accounting. The latter are displayed in Fig.4. 

The important limited CI effects are captured by the Super-PRTA algorithm as shown in 

Fig. 5, which has the ancillary effect of introducing some porosity into the Δn = 0  transitions. 

Note that the net Super PRTA effect on Δn ≠ 0  transition arrays, while still dressing detailed 

lines with spectator variances, is to leave essentially unresolved arrays. As illustrated by Fig. 6, 

the Super-PRTA captures the main effects of intermediate coupling, but within a super-

unresolved transition array approximation. In situations where array porosity is an important 

factor in the determination of Rosseland means, further refinement of the transition array 

accounting is still required. 

5. Conclusions 

A method to resolve partially the super transition array (STA) into daughter STA’s that 

accurately describes the evolution from pure LS conditions to the spin-orbit split sub-arrays was 

presented. The method uses a relatively small detailed line accounting (DLA) calculation with 

intermediate angular momentum coupling for the optically active subshells. The approach 

replaces ad hoc schemes to account for configuration interactions between relativistic sub-

configurations while remaining computationally efficient. 

Although the present work emphasized limited configuration interaction effects captured by 

treating only the active subshells by a DLA method, the formalism permits a stepwise refinement 

of a super transition array to the limit of DLA in ordinary configurations. It is possible to 
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envision including additional open subshells in the small DLA calculation, further refining the 

super shell structure, or both. Thus, the proposed method can be generalized to construct a hybrid 

super-PRTA description combining DLA with statistical methods. A step in that direction has 

been taken in order to account for highly excited spectator electrons with statistical methods in 

line-by-line opacity calculations [29]. 

Appendix A. Conservation of line strength 

In this appendix the approximate conservation of the strength of a non-relativistic transition 

array with the sum of the strengths of relativistic JTA’s comprising the array is derived. This is 

demonstrated by neglecting the energy differences between the relativistic spin up and down 

orbitals, whence the neglect of the Boltzmann factors in the evaluation of Eq. (3.1.6). Conserving 

the sum of JTA’s then reduces to establishing the identity 

 ! 

G !C qα gβ −qβ( )Sαβ

β∈b
∑

α∈a
∑

!C∈C
∑

G !C
!C∈C
∑ = qa gb −qb( )Sab

  (A.1) 

where the sum is over all relativistic configurations ! !C  contained in the nonrelativistic 

configuration C.  This is demonstrated by using the binomial identities [Eq. (9.92) in Ref. 16] 
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⎠
⎟
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along with the definition Eq. (3.1.9d) 
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Figure 1. The transition array [Mg]3p53d34s4p to [Mg]3p43d44s4p for In27+ at T=190 eV: full 

DLA intermediate coupling calculation (grey); LS-UTA (dash); SOSA (dot-dash); and PRTA 

(solid). 
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Figure 2. The Er39+ 3d to 4d transition arrays with initial super configuration [Ne][M]17[N]2 at 

T=295eV and ρ=0.09 g/cm3: STA parent (dash); 30 ordinary configurations with DCA-SOSA 

(dot-dash) and DLA-PRTA (grey); and Super-PRTA for the daughters (solid). 
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Figure 3. Frequency dependent opacity as a function of photon energy for Fe plasma at T=20 eV 

and ρ=10-4 g/cm3: TOPAZ SOSA (black) and TOPAZ DLA with intermediate coupling (grey). 

The Rosseland mean opacity increased by 11 percent (6006 cm2/g for SOSA to 6673 cm2/g for 

DLA). 
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Figure 4. Same as Fig. 3: TOPAZ DCA-SOSA as in Fig. 3 (thin black) and STA-SOSA (thick 

grey). Although both approaches give nearly identical ionization balance (Z*=8.70 with DCA 

and 8.67 for STA) the Rosseland mean opacity differs significantly (6670 cm2/g with DCA and 

7705 cm2/g for STA). 
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Figure 5. Same as Fig. 3: STA-SOSA as in Fig. 3 (grey) and Super-PRTA demonstrating 

intermediate coupling effects (thin-black). The Rosseland mean opacity increased by 11% from 

7705 cm2/g for SOSA to 8517 cm2/g for PRTA. 
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Figure 6. Same as Fig. 3: Super-PRTA as in Fig.5 (thin black); TOPAZ DLA with intermediate 

coupling (grey). 
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